Synthesis, Characterization and Bacterial Growth Inhibitory Properties of Schiff-Base Ligands Derived from Amino Acids
James Tembei Titah,
Coulibaly Wacothon Karime,
Kevin Chambers,
Anita Balogh,
Kevin Joannou
Issue:
Volume 8, Issue 1, February 2020
Pages:
1-6
Received:
23 January 2020
Accepted:
13 February 2020
Published:
2 March 2020
Abstract: Schiff-base ligands and their metal complexes are attracting a lot of research in bioinorganic and medicinal chemistry owing to their improved activity in biological systems. Six schiff-base ligands derived from amino acids; N-Salicylidene Alanine, N-Salicylidene Serine, N-Benzalidene Histidine, N-Balzalidene Leucine, N-4-(dimethylamino) benzalidene Phenylalanine, and N-4-(dimethylamino)benzalidene Valine have been synthesized, characterized and their bacterial growth inhibitory properties determined against Staphylococcus aureus and Escherichia coli. These schiff-bases are synthesized by the condensation reaction between carbonyl compounds (aldehydes and ketones) and amines (amino acids). Characterization of the schiff-base ligands is done using melting/decomposition temperatures, FTIR spectroscopy, US-visible spectroscopy, and solubility. It is observed that, all the schiff-base ligands contain the imine or azomethine (C=N) group with a stretching frequency ranging from 2200 - 2400 cm-1. In addition, all the schiff-base ligands are seen to be soluble in water, which is paramount in their application in biological systems. The structures of the schiff-base ligands were deduced based on the characterization techniques. Furthermore, the bacterial growth inhibitory properties of the schiff-base ligands were done using the Agar Well Diffusion method. The results reveal that, all the schiff-base ligands show no toxicity effect or negative bacterial growth properties against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria.
Abstract: Schiff-base ligands and their metal complexes are attracting a lot of research in bioinorganic and medicinal chemistry owing to their improved activity in biological systems. Six schiff-base ligands derived from amino acids; N-Salicylidene Alanine, N-Salicylidene Serine, N-Benzalidene Histidine, N-Balzalidene Leucine, N-4-(dimethylamino) benzaliden...
Show More
Uranium Sorption Using Lewatit MonoPlus M500 from Sulphate Media
Issue:
Volume 8, Issue 1, February 2020
Pages:
7-19
Received:
18 September 2019
Accepted:
9 December 2019
Published:
10 March 2020
Abstract: The present work has focused on the uptake behavior of uranium (VI) from sulfuric acid media by using Lewatit MonoPlus M500 resin. The influence of parameters, namely pH, U (VI) initial concentration, contact time and temperature were investigated. The optimum conditions were explicated via the sorption kinetics, the isotherm models and the thermodynamic data to determine the behavior of the uranium adsorption. The studied resin is an efficient sorbent for U (VI) ions with maximum sorption capacity qmax 181.82 mg g-1 and agreed with both the pseudo-second order kinetic model and Langmuir isotherm. Thermodynamic characteristics showed that the process was spontaneous (ΔG° < 0) and exothermic (ΔH° < 0) in nature. Finally, by application of the results to increase the uranium assay and purity in the working impure uranium concentrate which produced at Gattar pilot plant, Egypt. The assay increase from about 36% up to 71%, while the purity up to 94%.
Abstract: The present work has focused on the uptake behavior of uranium (VI) from sulfuric acid media by using Lewatit MonoPlus M500 resin. The influence of parameters, namely pH, U (VI) initial concentration, contact time and temperature were investigated. The optimum conditions were explicated via the sorption kinetics, the isotherm models and the thermod...
Show More