Spectroscopic Investigation of the Mixture of Ascorbic Acid and Sodium Benzoate
Issue:
Volume 7, Issue 3, June 2019
Pages:
62-66
Received:
31 July 2019
Accepted:
20 August 2019
Published:
12 September 2019
Abstract: UV spectroscopy was employed to understand the possible interaction between ascorbic acid (AA) and sodium benzoate (SB). The absorbance of each of the preservatives was taken singly (285 and 291nm for SB and AA, respectively) and the spectrum of a common drink that contained the two preservatives was recorded. Then the interaction of AA with SB was monitored by varying the concentration of AA in SB, reaction temperature and exposure to sunlight. The peaks of AA and SB disappeared and a new peak emerged at higher wavelength upon addition of AA to SB, suggesting a redshift and incorporation of AA in SB. Sunlight and temperature (≤body temperature) did not cause AA and SB to react or changes in the wavelength of maximum absorbance. Addition of AA into a typical fizzy drink did not result in new peak suggesting AA did not create any new products by its addition to this product, which already contained AA and SB at the recommended level. However, the addition of a higher amount of AA into the fizzy drinks cause a noticeable red shift from 287.5 to 295nm. Thus caution should be taken when taking AA with SB containing products.
Abstract: UV spectroscopy was employed to understand the possible interaction between ascorbic acid (AA) and sodium benzoate (SB). The absorbance of each of the preservatives was taken singly (285 and 291nm for SB and AA, respectively) and the spectrum of a common drink that contained the two preservatives was recorded. Then the interaction of AA with SB was...
Show More
Synthesis, Characterization and Antimicrobial Activities of Cobalt(II), Nickel(II) and Copper(II) Complexes of Aroylhydrazone Mixed with Aspirin
Olawale Folorunso Akinyele,
Temitope Oluwatola Akinnusi,
Temitope Adekunle Ajayeoba,
Ayowole Olaolu Ayeni,
Lateefah Moyosore Durosinmi
Issue:
Volume 7, Issue 3, June 2019
Pages:
67-71
Received:
12 June 2019
Accepted:
23 July 2019
Published:
17 September 2019
Abstract: Co(II), Ni(II), and Cu(II) complexes of aroylhydrazone mixed with aspirin were synthesized and characterized by percentage metal analysis, infrared and electronic spectroscopy, melting point, solubility, molar conductance and room temperature magnetic moment measurements. Infrared spectra data revealed that the aspirin behaved as a bidentate ligand with coordination via carboxylate and carbonyl groups while the hydrazine coordinated via the azomethine nitrogen atom and carbonyl oxygen atom in the aroylhydrazone. The room temperature magnetic moment and electronic spectral data that the metal complexes possessed octahedral geometry. The molar conductance measurements of all the metal complexes in DMF indicated that they are non-electrolytes. The in vitro antimicrobial activities studies showed that the Cu(II) complex had the best activity against tested bacteria; Streptococcus spp, B. subtlis and vibro spp with inhibitory zones range of 2.0 - 6.0 mm, while the Ni(II) complex showed considerable activity against gram negative bacteria; Shigella spp with inhibitory zone of 10.0 mm suggesting its potential as an antimicrobial agent.
Abstract: Co(II), Ni(II), and Cu(II) complexes of aroylhydrazone mixed with aspirin were synthesized and characterized by percentage metal analysis, infrared and electronic spectroscopy, melting point, solubility, molar conductance and room temperature magnetic moment measurements. Infrared spectra data revealed that the aspirin behaved as a bidentate ligand...
Show More