Research Article | | Peer-Reviewed

Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry

Received: 12 October 2024     Accepted: 1 November 2024     Published: 22 November 2024
Views:       Downloads:
Abstract

NTFPs play a crucial role in local ecosystems and economies, especially in rural areas where they are an important source of income and food security. The main objective of the study is to characterize the physicochemical properties of oils from these NTFPs in order to better understand their economic, food and industrial potential. This includes the analysis of fatty acids, minor compounds, as well as functional properties such as acidity, saponification index and iodine. The kernels of the NTFPs studied are rich in proteins with contents of 18.9% for Blighia sapida, 21% for chrysophyllum albidum, 22.5% for carapa procera and 18.9% for Tieghemella heckelii. In addition, these almonds are rich in oil with a content of 47.7% Tieghemella heckelii, 52.2%, Blighia sapida, 52% Chrysophyllum albidum and 54% carapa procera. These plants are oilseeds. These lipids have low acidity levels varying between 1.2 ± 0.2 to 2.6 ± 0.3%. The iodine values of the oil are 73.1 ±0.4 for Chrysophyllum albidum, 70 ± 0.3 for Carapa procera, 93.2±0.5, for Blighia sapida and 91.7 ±0.2 Tieghemella heckelii. Regarding the saponification indices the values found are 193.7±0.8 for Blighia sapida, 189.4±0.7 mgKOH/g for Carapa procera, 154.6±0.2 for Chrysophyllum albidum and 147.3 ± 0.5 for Tieghemella heckelii. The saponification indices are between 147.3 ± 0.5 to 193.7 ± 0.8. The analysis of the composition of free fatty acids showed that Tieghemella heckelii oil is mainly composed of oleic acid at 53.6±0.1 and stearic acid at 38.5±0.3. Blighia sapida oil's major compounds are oleic acid (54.6±0.1%), palmitic acid (24.2±0.2%) and stearic acid (16.4±0.0 %). Carapa procera oil is mainly composed of oleic acid at 50.7±0.0%, palmitic acid at 23±0.1%, linoleic acid at 11±0.0% and stearic acid 10.4±0.1%. As for Chrysophyllum albidum oil, it is mainly composed of oleic acid at 47.6±0.3% and α-linolenic acid 17.8±0.1%. The results show that β-sitosterol and γ-tocopherol constitute the major compounds in all the oils studied. The results show that NTFP oils can be a sustainable alternative to conventional oils, making them attractive for growing sectors, particularly those linked to sustainable development. Thus, this study makes a significant contribution to the promotion of NTFPs with a view to economic and environmental sustainability, while highlighting their potential role in the development of modern agroforestry.

Published in Science Journal of Chemistry (Volume 12, Issue 6)
DOI 10.11648/j.sjc.20241206.12
Page(s) 124-134
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

NWFPs, Seed Oil, Chemical Composition, Agroforestry

References
[1] M. Koné. Y. L. Kouadio. D. F. Neuba. D. F. Malan. et L. Coulibaly. «Évolution de la Couverture Forestière de la Côte D’ivoire des Années 1960 au Début du 21e Siècle [Evolution of the Forest cover in cote D’ivoire since 1960 to the beginning of the 21st century]». International Journal of Innovation and Applied Studies. vol. 7. no 2. p. 782. 2014.
[2] BROU Yao Esphore. E. Servat. et J. E. Paturel. «Activités humaines et variabilité climatique: cas du sud forestier ivoirien» [Human activities and climate variability: case of the Ivorian forest south] IAHS PUBLICATION. p. 365-374. 1998.
[3] K. J. A. BOUADOU et D. B. A. YAVO. «Comunication comme solution contributive pour la sauvegarde d’un bien commun: la forêt ivoirienne» [Communication as a contributory solution for the safeguarding of a common good: the Ivorian forest]
[4] A. A. Assiri et al.. «Les caracteristiques agronomiques des vergers de cacaoyer (#Theobroma cacao# L.) en Cote d’Ivoire» [The agronomic characteristics of cocoa orchards (#Theobroma cacao# L.) in Ivory Coast]. Journal of Animal and Plant Sciences. vol. 2. no 1. p. 55-66. 2009.
[5] L. Zhang. C. Yan. Q. Guo. J. Zhang. et J. Ruiz-Menjivar. «The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization». Int J Low-Carbon Tech. vol. 13. no 4. p. 338‑352. déc. 2018.
[6] B. B. N. B. VOUI et S. COULIBALY. «Vegetative propagation trial of Carapa procera CD (Meliaceae). a spontaneous species with multiple uses (Daloa. Central-West. Côte d’Ivoire)». GSC Advanced Research and Reviews. vol. 13. no 2. p. 158-169. 2022.
[7] P. Forget et P. A. Jansen. «Hunting Increases Dispersal Limitation in the Tree Carapa procera. a Nontimber Forest Product». Conservation Biology. vol. 21. no 1. p. 106-113. févr. 2007.
[8] U. Dembélé. A. M. Lykke. Y. Koné. B. Témé. et A. M. Kouyaté. «Use-value and importance of socio-cultural knowledge on Carapa procera trees in the Sudanian zone in Mali». J Ethnobiology Ethnomedicine. vol. 11. no 1. p. 14. déc. 2015.
[9] B. Lankoandé. A. Ouédraogo. J. I. Boussim. et A. M. Lykke. «Identification of determining traits of seed production in Carapa procera and Pentadesma butyracea. two native oil trees from riparian forests in Burkina Faso. West Africa». Biomass and Bioenergy. vol. 102. p. 37-43. 2017.
[10] S. C. Doffou. K. Kouadio. et H. N’Da Dibi. «Effets des variations climatiques à l’horizon 2050 sur la distribution phytogéographique de Tieghemella heckelii Pierre ex A. Chev. (Sapotaceae) en Côte d’Ivoire» [Effects of climatic variations by 2050 on the phytogeographic distribution of Tieghemella heckelii Pierre ex A. Chev. (Sapotaceae) in Ivory Coast]. International Journal of Biological and Chemical Sciences. vol. 15. no 2. p. 679-694. 2021.
[11] K. D. Kone. K. M. Konan. S. Y. Katou. J. A. Mamyrbekova-Bekro. et B. Yves-Alain. «Caractérisation nutritionnelle des graines et de la matière grasse liquide de Pentaclethra macrophylla Benth. et Tieghemella heckelii de Côte d’Ivoire» [Nutritional characterization of the seeds and the liquid fat of Pentaclethra macrophylla Benth. and Tieg-hemella heckelii from Ivory Coast]. International Journal of Innovation and Applied Studies. vol. 36. no 1. p. 31-38. 2022.
[12] N. D. Ouattara et al.. «Régénération de Tieghemella heckelii (A. Chev.) Pierre ex Dubard. un arbre en danger des forêts d’Afrique de l’Ouest et du Centre: Le poids des graines comme critère de sélection des semences» [Regeneration of Tieghemella heckelii (A. Chev.) Pierre ex Dubard. an endangered tree from the forests of West and Central Africa: Seed weight as a seed selection criterion]. International Journal of Innovation and Applied Studies. vol. 39. no 1. p. 366-375. 2023.
[13] Afnor. «Aliments des animaux - Détermination de la teneur en azote et calcul de la teneur en protéines brutes - Partie 1 : méthode Kjeldahl». [Feed - Nitrogen determination and cal-culation of crude protein content - Part 1: Kjeldahl method]. Afnor. Normes nationales et documents normatifs nationaux. octobre 2014.
[14] W. Horwitz et G. W. Latimer. Official methods of analysis of AOAC International. 18th ed. Gaithersburg. Md.: AOAC International. 2005.
[15] J. Roche. A. Bouniols. Z. Mouloungui. T. Barranco. et M. Cerny. «Management of environmental crop conditions to produce useful sunflower oil components». European journal of lipid science and technology. vol. 108. no 4. p. 287-297. 2006.
[16] E. Schulte et K. Weber. «Rapid preparation of fatty-acid methyl-esters from fats with trimethylsulfoniumhydroxide or sodium methylate». Fett Wissenschaft Technologie-Fat Science Technology. vol. 91. no 5. p. 181-183. 1989.
[17] L. Bonnéhin. Domestication paysanne des arbres fruitiers forestiers: cas de Coula edulis Bail. Olacaceae. et de Tieghemella heckelii Pierre ex A. Chev.. Sapotaceae. autour du Parc National de Taï. Côte d’Ivoire [Peasant domestication of forest fruit trees: case of Coula edulis Bail. Olacaceae. and of Tieghemella heckelii Pierre ex A. Chev.. Sapotaceae. around the Taï National Park. Ivory Coast]. Wageningen University and Research. 2000.
[18] A. J. Djaha et G. M. Gnahoua. «Contribution à l’inventaire et à la domestication des espèces alimentaires sauvages de Côte d’Ivoire: Cas des Départements d’Agboville et d’Oumé» [Contribution to the inventory and domestication of wild food species in Côte d'Ivoire: Case of the Departments of Agboville and Oumé]. Journal of Applied Biosciences. vol. 78. no 1. p. 6620-6629. 2014.
[19] S. Sanogo. M. Sacandé. P. van Damme. et I. NDiaye. «Characterization. germination and conservation of seeds of Carapa procera DC. (Meliaceae). a useful medicinal species for human and animal health.».
[20] B. Camara et al.. «Croissance et Développement de Carapa procera DC. sur différents types de terreau en pépinière en Basse Casamance (Sénégal)» [Growth and Development of Carapa procera DC. on different types of potting soil in nursery in Lower Casamance (Senegal)]. International Journal of Biological and Chemical Sciences. vol. 17. no 3. p. 1006-1019. 2023.
[21] O. Howélé. N. Bobelé. D. Théodor. et K. C. Séraphi. «Nutritional composition studies of sun dried Blighia sapida (K. Koenig) aril from Côte d’Ivoire». Journal of Applied Biosciences. vol. 32. p. 1989-1994. 2010.
[22] I. NDABALISHYE et A.-A. ZABOUO. «Etude sur la gestion durable des ressources naturelles dans l’espace taï» [study on the sustainable management of natural resources]. Deutsche Gesellschaft für Internationale Zusammenarbeit. août 2014.
[23] T. S. Djenontin. V. D. Wotto. F. Avlessi. P. Lozano. D. K. C. Sohounhloué. et D. Pioch. «Composition of Azadirachta indica and Carapa procera (Meliaceae) seed oils and cakes obtained after oil extraction». Industrial Crops and Products. vol. 38. p. 39-45. juill. 2012.
[24] D. Nikiema et al. «Effect of dehulling method on the chemical composition of the lipid constituents of the kernels and oils of Ricinodendron heudelotii seeds». Industrial Crops and Products. vol. 140. p. 111614. 2019.
[25] S. K. Koumba Ibinga et al.. «Extraction and Physicochemical Composition of Irvingiagabonensis Almond Oil: A Potential Healthy Source of Lauric-Myristic Oil». Separations. vol. 9. no 8. Art. no 8. août 2022.
[26] W. H. Organization. Diet. nutrition. and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. vol. 916. World Health Organization. 2003.
[27] I. O. Lawal. Y. O. Babalola. O. A. Agboadediran. et B. O. Rafiu. «Comparative Studies on Phytochemicals and Physicochemical Compositions of Chrysophyllum albidum G: Don Seeds Oil and Edible Commercial Oil». European Journal of Medicinal Plants. vol. 32. no 6. p. 22-33. 2021.
[28] K. Esuoso. H. Lutz. M. Kutubuddin. et E. Bayer. «Chemical composition and potential of some underutilized tropical biomass. I: fluted pumpkin (Telfairia occidentalis)». Food Chemistry. vol. 61. no 4. p. 487-492. 1998.
[29] S. Aloko. C. P. Azubuike. et H. A. Coker. «Physicochemical properties and lubricant potentials of Blighia sapida Sapindaceaeae seed oil in solid dosage formulations». Tropical Journal of Pharmaceutical Research. vol. 16. no 2. Art. no 2. mars 2017.
[30] A. A. Bello. O. S. Muniru. et C. C. Igwe. « Varietal differences in the oil composition of the Seed of two indigenous Chrysophyllum albidium species ». Asian J. Appl. Chem. Res. vol. 3. no 4. p. 1-7. 2019.
[31] S. E. Adebayo. B. A. Orhevba. P. A. Adeoye. J. J. Musa. et O. J. Fase. «Solvent extraction and characterization of oil from African Star Apple (Chysophyllumalbidum)». 2012.
[32] C. Ahouannou. F. P. Tchobo. C. A. Toukourou. F. Kougbadi. et M. M. Soumanou. «Influence des opérations thermiques impliquées dans les procédés traditionnels d’extraction du beurre de karité au Bénin» [Influence of the thermal operations involved in the traditional processes of shea butter extraction in Benin]. International Journal of Biological and Chemical Sciences. vol. 7. no 5. Art. no 5. 2013.
[33] S. T. Djenontin. V. D. Wotto. P. Lozano. D. Pioch. et D. K. C. Sohounhloué. « Characterisation of Blighia sapida (Sapindaceae) seed oil and defatted cake from Benin ». Natural Product Research. vol. 23. no 6. p. 549-560. avr. 2009.
[34] B. Gossé. G. Anatole. A. A. Amissa. et Y. Ito. « Chemical analysis of the seed of the ripe fruit of tieghemella heckelii ». Journal of Liquid Chromatography & Related Technologies. vol. 25. no 18. p. 2873-2882. nov. 2002.
Cite This Article
  • APA Style

    Diakaridja, N., Ouehi, D., Fatimata, N., Éric, L., Valentin, R., et al. (2024). Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry. Science Journal of Chemistry, 12(6), 124-134. https://doi.org/10.11648/j.sjc.20241206.12

    Copy | Download

    ACS Style

    Diakaridja, N.; Ouehi, D.; Fatimata, N.; Éric, L.; Valentin, R., et al. Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry. Sci. J. Chem. 2024, 12(6), 124-134. doi: 10.11648/j.sjc.20241206.12

    Copy | Download

    AMA Style

    Diakaridja N, Ouehi D, Fatimata N, Éric L, Valentin R, et al. Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry. Sci J Chem. 2024;12(6):124-134. doi: 10.11648/j.sjc.20241206.12

    Copy | Download

  • @article{10.11648/j.sjc.20241206.12,
      author = {Nikiema Diakaridja and Dosso Ouehi and Nea Fatimata and Lacroux Éric and Romain Valentin and Cerny Muriel and Mouloungui Zéphirin and Koua Oi Koua},
      title = {Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry
    },
      journal = {Science Journal of Chemistry},
      volume = {12},
      number = {6},
      pages = {124-134},
      doi = {10.11648/j.sjc.20241206.12},
      url = {https://doi.org/10.11648/j.sjc.20241206.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20241206.12},
      abstract = {NTFPs play a crucial role in local ecosystems and economies, especially in rural areas where they are an important source of income and food security. The main objective of the study is to characterize the physicochemical properties of oils from these NTFPs in order to better understand their economic, food and industrial potential. This includes the analysis of fatty acids, minor compounds, as well as functional properties such as acidity, saponification index and iodine. The kernels of the NTFPs studied are rich in proteins with contents of 18.9% for Blighia sapida, 21% for chrysophyllum albidum, 22.5% for carapa procera and 18.9% for Tieghemella heckelii. In addition, these almonds are rich in oil with a content of 47.7% Tieghemella heckelii, 52.2%, Blighia sapida, 52% Chrysophyllum albidum and 54% carapa procera. These plants are oilseeds. These lipids have low acidity levels varying between 1.2 ± 0.2 to 2.6 ± 0.3%. The iodine values of the oil are 73.1 ±0.4 for Chrysophyllum albidum, 70 ± 0.3 for Carapa procera, 93.2±0.5, for Blighia sapida and 91.7 ±0.2 Tieghemella heckelii. Regarding the saponification indices the values found are 193.7±0.8 for Blighia sapida, 189.4±0.7 mgKOH/g for Carapa procera, 154.6±0.2 for Chrysophyllum albidum and 147.3 ± 0.5 for Tieghemella heckelii. The saponification indices are between 147.3 ± 0.5 to 193.7 ± 0.8. The analysis of the composition of free fatty acids showed that Tieghemella heckelii oil is mainly composed of oleic acid at 53.6±0.1 and stearic acid at 38.5±0.3. Blighia sapida oil's major compounds are oleic acid (54.6±0.1%), palmitic acid (24.2±0.2%) and stearic acid (16.4±0.0 %). Carapa procera oil is mainly composed of oleic acid at 50.7±0.0%, palmitic acid at 23±0.1%, linoleic acid at 11±0.0% and stearic acid 10.4±0.1%. As for Chrysophyllum albidum oil, it is mainly composed of oleic acid at 47.6±0.3% and α-linolenic acid 17.8±0.1%. The results show that β-sitosterol and γ-tocopherol constitute the major compounds in all the oils studied. The results show that NTFP oils can be a sustainable alternative to conventional oils, making them attractive for growing sectors, particularly those linked to sustainable development. Thus, this study makes a significant contribution to the promotion of NTFPs with a view to economic and environmental sustainability, while highlighting their potential role in the development of modern agroforestry.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Physicochemical Characterization of Non-Wood Forest Product Oils: Towards a Strategic Positioning in Agroforestry
    
    AU  - Nikiema Diakaridja
    AU  - Dosso Ouehi
    AU  - Nea Fatimata
    AU  - Lacroux Éric
    AU  - Romain Valentin
    AU  - Cerny Muriel
    AU  - Mouloungui Zéphirin
    AU  - Koua Oi Koua
    Y1  - 2024/11/22
    PY  - 2024
    N1  - https://doi.org/10.11648/j.sjc.20241206.12
    DO  - 10.11648/j.sjc.20241206.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 124
    EP  - 134
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20241206.12
    AB  - NTFPs play a crucial role in local ecosystems and economies, especially in rural areas where they are an important source of income and food security. The main objective of the study is to characterize the physicochemical properties of oils from these NTFPs in order to better understand their economic, food and industrial potential. This includes the analysis of fatty acids, minor compounds, as well as functional properties such as acidity, saponification index and iodine. The kernels of the NTFPs studied are rich in proteins with contents of 18.9% for Blighia sapida, 21% for chrysophyllum albidum, 22.5% for carapa procera and 18.9% for Tieghemella heckelii. In addition, these almonds are rich in oil with a content of 47.7% Tieghemella heckelii, 52.2%, Blighia sapida, 52% Chrysophyllum albidum and 54% carapa procera. These plants are oilseeds. These lipids have low acidity levels varying between 1.2 ± 0.2 to 2.6 ± 0.3%. The iodine values of the oil are 73.1 ±0.4 for Chrysophyllum albidum, 70 ± 0.3 for Carapa procera, 93.2±0.5, for Blighia sapida and 91.7 ±0.2 Tieghemella heckelii. Regarding the saponification indices the values found are 193.7±0.8 for Blighia sapida, 189.4±0.7 mgKOH/g for Carapa procera, 154.6±0.2 for Chrysophyllum albidum and 147.3 ± 0.5 for Tieghemella heckelii. The saponification indices are between 147.3 ± 0.5 to 193.7 ± 0.8. The analysis of the composition of free fatty acids showed that Tieghemella heckelii oil is mainly composed of oleic acid at 53.6±0.1 and stearic acid at 38.5±0.3. Blighia sapida oil's major compounds are oleic acid (54.6±0.1%), palmitic acid (24.2±0.2%) and stearic acid (16.4±0.0 %). Carapa procera oil is mainly composed of oleic acid at 50.7±0.0%, palmitic acid at 23±0.1%, linoleic acid at 11±0.0% and stearic acid 10.4±0.1%. As for Chrysophyllum albidum oil, it is mainly composed of oleic acid at 47.6±0.3% and α-linolenic acid 17.8±0.1%. The results show that β-sitosterol and γ-tocopherol constitute the major compounds in all the oils studied. The results show that NTFP oils can be a sustainable alternative to conventional oils, making them attractive for growing sectors, particularly those linked to sustainable development. Thus, this study makes a significant contribution to the promotion of NTFPs with a view to economic and environmental sustainability, while highlighting their potential role in the development of modern agroforestry.
    
    VL  - 12
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France;Laboratory of Constitution and Reaction of Matter, Unity of Formation and Research Science of Structure Matter and Technology, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire

  • Laboratory of Constitution and Reaction of Matter, Unity of Formation and Research Science of Structure Matter and Technology, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire

  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France;Abidjan Graduate School of Education, Abidjan, Côte d’Ivoire

  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France

  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France

  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France

  • Laboratory of Agro-Industrial Chemistry, National Polytechnic Institute-National Higher School of Engineers in Chemical and Technological Arts, Toulouse, France

  • Laboratory of Constitution and Reaction of Matter, Unity of Formation and Research Science of Structure Matter and Technology, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire

  • Sections